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In the modeling of infectious disease spread within explicit social contact networks, previous studies have
predominantly assumed that the effects of shifting social associations within groups are small. These models
have utilized static approximations of contact networks. We examine this assumption by modeling disease
spread within dynamic networks where associations shift according to individual preference based on three
different measures of network centrality. The results of our investigations clearly show that this assumption
may not hold in many cases. We demonstrate that these differences in association dynamics do yield signifi-
cantly different disease outcomes both from each other and also from models using graph-theoretically accu-
rate static network approximations. Further work is therefore needed to explore under which circumstances
static models accurately reflect constantly shifting natural populations.
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I. INTRODUCTION

Traditional compartmental susceptible-infected-recovered
�SIR� models of disease spread assumed homogeneous mix-
ing rates within an infected population �1–3�. However, more
recently, models have been developed to examine the effects
of heterogeneities in the mixing rates among individuals on
patterns in the spread of infectious diseases �3,4�. Among the
techniques employed, network models are the most explicit
in their incorporation of social contacts, defining each inter-
action between pairs of individuals �or groups of individuals�
and considering these as potential routes of pathogen trans-
mission �3,5–14� �see Ref. �14� for a review of network epi-
demiology and a list of references therein�. The results of
these studies have shown that the network structure of the
population can greatly affect the duration and overall sever-
ity of an outbreak �3,6,8,10,11,13�. However, the underlying
assumption for most of these works is that the network is
essentially static: once an association is formed between two
individuals this association will remain unaltered. Unfortu-
nately, associations between individuals in a social network
usually change with new relations being formed and old ones
removed continuously �15,16�.

A few studies have examined the resulting spread of dis-
ease in networks with shifting contacts �14,17–19�. Further,
there have been several studies on the spread of disease on
scale free �13,20,21�, small world �22,23�, and random �24�
networks. Some investigations have examined patterns of
disease spread on growing networks, determining how the
formation of new contacts can affect the transmission of in-
fectious diseases �17�. These studies have all assumed gen-
eralized dynamic processes to determine the changes over
time, maintaining the global properties of the network �e.g.,
small world properties, average degree, etc.�.

However, by focusing on a local level, rather than consid-
ering the global properties of the network in its entirety, dy-

namic networks can be used to examine the role of indi-
vidual behaviors. Nonrandom individual behavior �in which
individuals within the graph make preferential association
choices based on some network structure measure; one well-
known example of such association behavior is called “pref-
erential attachment” �25��, has already been shown to greatly
affect the global structure of a network, with different asso-
ciation preferences potentially yielding very different emer-
gent network structures �26�. These kinds of shifting net-
works �i.e., those that change with time based on individual
action� have been the focus of various studies in social net-
work theory �27,28�. In particular, social network models
where individuals modify their associations based on opti-
mizing some utility function determined by the cost and ben-
efits involved in maintaining an association were studied in
Refs. �27–29�. However, to the best of our knowledge, no
studies to date have examined the impact such individually
driven network dynamics can have on the structures of net-
works �regardless of whether a converging structure
emerges�, and the associated susceptibility of the population
to disease threats.

In order to investigate the potential role of individually
driven network dynamics in infectious disease epidemiology,
we adopt three simplified measures of network “centrality”
�30�: “degree,” “betweenness,” and “closeness.” The degree
centrality of an individual v is defined to be the proportion of
individuals in the network to which v is affiliated. The be-
tweenness centrality describes v’s belonging to the shortest
contact paths between pairs of other individuals in the net-
work, while the closeness centrality of v is a quantification
of how many contacts away v is from all other individuals in
the network. �Details of the use of these measures in the
modeling of network dynamics, in addition to the use of
associated metrics for describing the centrality of the net-
work as a whole, are discussed in Appendixes A and B, but
also see Ref. �26�.� Incorporating the use of centrality mea-
sures in the study of network disease epidemiology is not
novel, as observed in Refs. �31–33�. However, we do not
here propose to characterize the explicit nature of disease
spread by the use of these measures, instead we use central-*matngkl@nus.edu.sg
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ity only as a proxy system for network dynamics based on
individual preference. There are examples of populations in
the natural world in which individuals are seen to form as-
sociations based on characteristics consistent with both the
degree and the closeness measures of centrality �see Ref.
�26�, and references therein�. Of course, these measures most
certainly do not capture the full complexity of social systems
and are only three of the many centrality measures employed
by social network theorists. These measures are used here
only as a reasonably diverse set of measures, yielding sub-
stantially different outcomes for the same individuals within
the same network. They are merely employed because, to-
gether, they represent a sufficient diversity in the complexity
of individual evaluative capability so as to provide an initial
point of investigation into how constantly shifting dynamics
could have an effect on the resulting network structure which
could then, consequently, affect disease dynamics on the net-
work.

Additionally, in traditional and static network models,
higher probabilities of transmission of infection from an in-
fected to a susceptible individual have been shown to in-
crease the severity of an outbreak up until a saturation
threshold past which the disease reach density dependent
feedback based on the remaining number of susceptible in-
dividuals �3,13�. In a dynamically shifting network, however,
the possibility arises that the relative rates of shifting social
contacts and transmission of infection could together pro-
duce different patterns of disease spread, causing disease
load �the cumulative number of secondary infections occur-
ring in a population over a period of time� to no longer vary
directly in proportion to the probability of transmission. This
could then lead to different relative susceptibilities of differ-
ent dynamic populations under different probabilities of
transmission. The existence of such relative differences
would reveal yet another important effect of dynamic social
contact networks.

Although it may prove to be impossible to characterize
social networks and their dynamics in human populations,
how such dynamics can affect the accuracy of disease mod-
els employing static approximations would provide crucial
insight into any true understanding of the behavior of infec-
tious disease. Any increase in understanding how the con-
tinual shifting of contact patterns within populations can af-
fect network structures may lead to a greater understanding
of how these structures affect disease incidence and may
ultimately improve potential intervention strategies. If dy-
namic networks do not uniformly converge to structures
�e.g., exhibiting scale free properties, having power law de-
gree distributions�, then any difference in disease incidence
between dynamic and static models would suggest that net-
work dynamics can have a profound effect.

Additionally, many of the diseases of modern concern
emerge from wildlife populations in which population size is
relatively small and social behavior is well studied �and, for
some species, even well represented by these sorts of simple
centrality measures; e.g., degree centrality as in Ref. �34�; cf.
Ref. �26�� and could easily be characterized for purposes of
modeling. In using mathematical models to understand the
complicated processes of disease in wildlife and human
populations no one facet is likely to be solely responsible for

driving the dynamics but social dynamics may prove to play
a significant and substantial role. As with our choice of cen-
trality measures, the characteristics we have chosen to as-
cribe to our social networks are not meant to accurately rep-
resent specific characteristics of any particular real-world
networks. We have examined relatively small networks, us-
ing individual social preferences based on local information
�centrality of neighbors� derived from global standing within
a closed community to investigate whether or not a set of
dynamic behaviors exist which cause disease spread to be-
have in ways unpredicted by studies on static networks. Here
we provide an investigation into the spread of disease in
these individually driven dynamic social networks.

II. METHODS

To model an association network of N individuals �see
Table I for a summary of parameters and variables used in
this study�, we use a directed graph �or digraph; a graph in
which the direction of edges, then called “arcs,” from one
individual to another is specified� in which each individual
was assigned five out neighbors �arcs originating from the
individual� as described in the methods of Ref. �26�, details
of which are provided in Appendix A. A digraph was utilized
to reflect the fact that not all social relationships are recipro-
cal �e.g., hierarchical grooming, see Refs. �12,36��.

The association preference �betweenness, closeness, or
degree; see Refs. �26,30�� for all individuals within a popu-
lation was defined prior to the beginning of the computation.
The network then shifted as each individual kept three and
discarded two of its out-neighbors according to their relative
rank under the appropriate measure in each computational
time step before replacing the two discarded neighbors with
two others in the network chosen at random. Thus the num-
ber of arcs in each network is kept constant during each time
step �again see Appendix A�. �Note: in order to agree with
the notation of social network theory, the measure of “popu-
larity” from Ref. �26� will here be referred to as “degree.”�
We refer to a population where all the individuals having
betweenness �closeness and degree� as an association prefer-
ence, as a B population �C and D populations�.

In order to compare the stochastic process of disease
spread consistently over these divergently shifting networks
it is necessary to ensure that contact �an arc� between a spe-
cific susceptible and infected pair of individuals, resulting in
the successful transmission of disease in one network, will
also result in transmission in any other network in which the
disease status and contact within the pair is identical within
the same computational time step. To accomplish this, we
define G to be the complete digraph �containing all possible
arcs� with N individuals. In each time step, our networks can
thus be considered to be separate subdigraphs of G �Gt,B,
Gt,C, and Gt,D for the B, C, and D populations at time t,
respectively� where all individuals in G exist in each of the
three subdigraphs even though many of the arcs do not. To
ensure that only the association preferences affected the net-
work structures over time, a single subdigraph was generated
at random and all three networks were initially defined to be
equal to that single subdigraph. Therefore G0,B=G0,C
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=G0,D�G, although subsequent shifting within each of the
networks would result in divergent network structures among
the three populations already after the first computational
time step.

In order to model the spread of infectious disease in each
of these three dynamic networks, we classify each individual
as either susceptible �S�, exposed �E�, or infected �I�. �Our
models can thus be considered a network-based representa-
tion of the standard SEIS model; see Ref. �35�.� All individu-
als are initially susceptible. A single individual vk�G was
chosen at random at t= t* through which infection was intro-
duced into each of the three networks G50,B, G50,C, and G50,D,
even though by then these three networks would have very
different network structures �26�. This single point source
was the only instance of primary disease introduction into
the population. All subsequent infections were the result of
secondary transmission, described as follows.

In each t� t*, we generated a single N�N matrix Mt

�with the �i , j� entry of Mt denoted by Mi,j
t and taking values

between 0 and 1 chosen from a uniform distribution�. For
ease of notation, within each network type X, we define
at,X�i , j� to be equal to 1 if vi is adjacent to v j in Gt,X and zero
otherwise. At each t, if an individual vi is in state I, another
individual v j is in state S, then transmission of infection
occurs if either

�a� at,X�i, j� = 1, at,X�j,i� = 0, Mi,j
t � Ptrans or

�b� at,X�i, j� = 0, at,X�j,i� = 1, Mj,i
t � Ptrans or

�c� at,X�i, j� = 1, at,X�j,i� = 1, Mi,j
t + �Add.-fact.�Mj,i

t � Ptrans,

where Ptrans is the constant probability of transmission given
contact between a susceptible and an infected individual.
This successful transmission of disease caused the suscep-
tible individual to be considered exposed for one time step
and subsequently to become infectious at the beginning of

the next time step �this was done for ease of implementation
and not due to any disease specific properties of investiga-
tion�. The individual then remained infected for Inf.-dur.
time steps and then returned to being susceptible.

Note. For the purpose of disease transmission, there was
no difference between an arc from vi to v j and one from v j to
vi. If either one of the two arcs �but not both� existed be-
tween vi �in state I� and v j �in state S�, then it was equally
likely for vi to infect v j regardless of the direction of the arc.
However, if both arcs existed, the probability of a successful
disease transmission was adjusted by a factor of Add.-fact. as
described above. Thus while individual associations were al-
tered based on a digraph structure, the processes of disease
spread occurred on an undirected network. As a result, the
disease propagation model employed allowed for transmis-
sion in either directions of the association between two indi-
viduals so long as any association between them exists.
While the social association network structure was a digraph,
the disease propagation network structure was an undirected
graph. We believe that this allows us to reasonably approxi-
mate both the asymmetric social and bidirectional disease
dynamics.

Defined as above, Mi,j
t can be thought of as representing

an independently generated random value governing whether
or not disease would be transmitted from vi to v j in the
complete digraph G. Therefore, though each arc in G may
not exist within all of the three subdigraphs at a given t, if an
arc existed between two individuals vi and v j in more than
one of the subdigraphs during the same computational time
step, it carried the same associated Mi,j

t . As a result, the
transmission of infection between two individuals at any par-
ticular computational time step was consistent across all
three dynamic networks so long as the arc between the pair
existed in the corresponding subdigraphs. In this way, we
controlled for the stochastic effects of the disease propaga-
tion model, allowing us to compare disease spread among
the divergent network structures over time �see Fig. 1�.

TABLE I. A summary of parameters and variables used in this study.

Variable/parameter Description Value�s� taken

N Number of vertices in network 50a

t Discrete time step 0 ,1 , . . . ,200
�for dynamic model�

0,1 , . . . ,250
�for static model�

t* Time step when primary source of infection
is introduced into model

50
�for dynamic model�

100 �for static model�a

Inf.-dur. Number of time steps a vertex in state I stays
infectious before returning to state S

2

Add.-fact. Additive factor if reciprocal arc exists between
a vertex in state I and another in state S

0.2

Ptrans Probability of successful transmission of
infection from vertex in state I to a

neighboring vertex in state S

0.05, 0.1,
0.15, 0.2a

aIndicates that these values were altered to examine the effects of different network sizes on the results;
scaled outcomes are reviewed briefly in Appendix D.
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In order to determine whether or not continued shifting in
associations among individuals affected the disease propaga-
tion in the network beyond the determination of stable net-
work characteristics, we modeled a complementary set of
“static” scenarios in which individuals ceased to reevaluate
their associations after a period of time. These static models,
similar to the dynamic models described above, began with
three identical subdigraphs of G. These models were defined
identically to the dynamic models above with two crucial
exceptions: �1� t*=100, rather than 50 as in the dynamic
model and �2� for all t�100 �and therefore after the net-
works had converged to stable configurations �26�, and after
the introduction of disease�, individuals were no longer per-
mitted to shift their associations. �When scaling this process
on the larger networks, disease was introduced, and/or the
network frozen, only once the network had converged within
at least 10% of the degree centrality measure at stability; see
Appendix D.�

To determine the network characteristics of the stable sub-
digraph structures �G200,X�, we extracted an undirected graph
�G200,X� in the following way. For each pair of vertices vi and
v j in G200,X, as long as there is an arc between vi and v j,
regardless of direction, then there is a single edge between vi
and v j in G200,X. �These properties were extracted at t=200;

previous work has demonstrated that these dynamic net-
works had converged to a stable structure by t�100 �26�,
therefore these properties can be understood to represent the
static subgraphs as well.� This allowed an understanding of
the associated degree distributions and network centralities
of all the subgraphs to provide an understanding of the rela-
tive global structures of these stable or static networks. Ad-
ditionally, because the density of arcs was constant over time
and across the different networks, regardless of the prefer-
ence of association, the �relatively low� sparseness of the
connections with the network were held constant, controlling
for any potential effects within the scope of our study. �It
should be noted that examples of populations with extremely
high densities of connectedness, and therefore low sparse-
ness, are common in natural populations �e.g., family herds
or colonies; Refs. �37,38�, and references contained therein�.
Even so, the larger network models did involve the exami-
nation of increasingly sparse networks.�

Together, the dynamic and static models allow us to ex-
plore whether or not continued shifting within a network
itself impacts the processes of disease spread. Total disease
incidence was recorded in both the dynamic and static sce-
narios for 150 time steps after the initial introduction of dis-
ease �however, to compensate for the relative decrease in
disease incidence in the sparser, larger networks, disease was

0, 0, 0,{ }B C DG G G= =⊇G The sub-digraphs with only the arcs among individuals
dictated by their specific affiliation dynamic

The complete digraph with all possible arcs
among all 50 individuals

49, 49, 49,{ }B C DG G G≠ ≠

Affiliations shift depending on individual preference

⊇G
(A)

50, 50, 50,{ }B C DG G G≠ ≠⊇G
Introduces disease via the same
individual in all networks
Generates the matrix 50M ,
Disease propagates, affiliations shift

51, 51, 51,{ }B C DG G G≠ ≠⊇G

(B)

Generates the matrix 51M
Disease propagates, affiliations shift

(C)

200, 200, 200,{ }B C DG G G≠ ≠⊇GEnd of computation
Cumulative number of infections
over all time steps recorded

(E)

(D)

FIG. 1. Schematic diagram portraying how social networks with different association preferences are exposed to disease outbreak:
Dynamics of a constantly shifting social network with different association preferences subjected to disease propagation. �A� Three initially
identical networks �but with different association preferences� are created; subsequent association shifts causes them to diverge into networks
with different structures over time. �B� At t= t*=50, a source of infection vi is chosen at random; vi changes to state I and the spreading
process begins. The matrix M50 is generated. Individuals v j with arcs connecting them to vi in any of the networks become exposed, or not,
in all of the networks with the appropriate arcs depending on Mi,j

50 and/or Mj,i
50. Networks continue to shift according to individual preference.

�C� At t=51, the matrix M51 is generated. Individuals in state E changes to state I and the spreading process continues. All of the networks
continue to shift. �D� Disease propagation and association shifts continue; infection numbers recorded at each time t. �E� Cumulative
numbers of infection are recorded for each network.
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allowed to propagate within the larger systems for 300 time
steps after introduction; see Appendix D�. Each scenario
�static and dynamic, at each disease transmission probability
and for each association preference type� was computed 300
times to examine the behavior of the system given the dy-
namic shifting of the network structures and the stochastic
nature of disease propagation in the model.

III. RESULTS AND DISCUSSION

A. Dynamic association network comparisons

From the models presented here, we see that the differ-
ences among the three populations did yield different
population-level incidence of disease �Table II�. �For a brief
explanation of statistical tests used in this study, see Appen-
dix C or Refs. �39,40� for a more detailed description.� These
differences varied in statistical significance depending both
on the association networks compared and also on the prob-
ability of disease transmission �Table II�. This implies that
natural populations of species with different systems of

social organization, even if the species have identical physi-
ological, immunological, and etiological susceptibilities, can
be expected to suffer different disease loads. The novelty of
this result is a matter of perspective. While network epide-
miologists have long concluded that sufficiently distinct net-
work structures will lead to distinct patterns in disease
spread, this work begins to ask questions about what proper-
ties will cause networks to be “sufficiently distinct.” Depend-
ing on our evaluative measure, the properties of the networks
after convergence can either agree closely �e.g., degree dis-
tribution for the B and D populations, or the betweenness
centrality measure of both the B and C populations; see Fig.
2�, or differ drastically �e.g., the degree centrality measure of
the C and D populations; see Fig. 2�. These metrics of net-
work similarity, especially degree distribution, are among
those frequently believed to provide good characterizations
of network similarity for purposes of disease spread poten-
tial. However, clearly from our results, not only do these
different network measures not always agree, but even when
there is close agreement, they do not necessarily yield simi-
lar disease spread patterns �see Table II�.

TABLE II. The pairwise comparison of the cumulative number of infections in the different populations:
The numbers reported were observed �for both the dynamic and static models� after 150 time steps subse-
quent to the introduction of infection. These result from the nonparametric statistical comparisons of 300
independent Monte Carlo computations for both the static and dynamic models of each population type,
under each transmission probability. The “�” �“�”� indicates the population corresponding to the row of that
cell had a significantly larger �smaller� cumulative number of infections than the population corresponding to
the column. Diagonal entries �within each probability of transmission� represent the comparison of the static
to dynamic results in populations of the same type. The distinct dynamics of the shifting networks produce
significantly different disease incidence from one another at higher levels of disease transmission. However,
the relative levels of disease across populations are dependent on the probability of transmission given social
contact between infected and susceptible individuals. For example, the C population is seen to have the
greatest disease incidence at higher transmission levels, but the smallest incidence as the transmission prob-
ability drops.

B population C population D population

Three-way test Dynamic Static Dynamic Static Dynamic Static

Ptrans 0.15 B Dynamica B static �B dynamicc �b �b � �b

C C static �C dynamicc �b �b

D Statica D static �D dynamicc

Overall: Dynamic C�B�D; Static C�B�D

0.1 B Dynamica B static �B dynamicc � NS NS NS

C C static �C dynamicc �b NS

D StaticNS NS

Overall: Dynamic B�D�C; Static B�D�C

0.05 B Dynamica NS � � NS NS

C NS � �b

D Statica NS

Overall: Dynamic B�D�C; Static B�D�C

aDenotes a p value �0.005 with Kruskal-Wallis test. NS denotes no significant difference.
bDenotes a p value �0.001 with Dunn’s post test �following Kruskal-Wallis test�. �, � denotes a p value
�0.05 with Dunn’s post test �following Kruskal-Wallis test�.
cDenotes a p value �0.05 with Mann-Whitney test.

HOW DISEASE MODELS IN STATIC NETWORKS CAN… PHYSICAL REVIEW E 76, 031919 �2007�

031919-5



Not only do we see these differences in disease load over
all due solely to the association preferences of the networks,
but the direction of the inequality in disease incidence be-
tween the closeness population and both the betweenness
and degree populations �respectively� were seen to be depen-
dent on the probability of disease transmission �Table II�.
The increase in the probability of transmission of infection
thus affected the disease load of the populations differently
depending only on the association preference of the network.
�We here present the results for only three values of Ptrans,
however, we did examine higher probabilities and found all
of them to result in the same outcomes as those for Ptrans

=0.15.� Our models revealed this threshold for the reversal
of the system behavior for a network of 50 nodes to occur at
a transmission probability of between 0.05 and 0.15. This
numerical result, however, is shown only to reveal the exis-
tence of such a threshold and not to define an absolute
threshold for a general case. It is likely that further research
will show any such breakpoint to be determined by the char-
acteristics of the networks involved �e.g., size, density of
contacts, association preferences, etc.�.

B. Static vs dynamic network comparisons

While these results already show that shifting social con-
tacts based on individual association preference can greatly
impact the disease load of a population, the dynamics of the
system could have served only to define consistent network
properties �e.g., degree distribution, betweenness centrality,
etc.� of the convergent stable structure. Disease incidence on
networks with these properties would therefore be able to be
approximated by an appropriately tailored static model �such
as those already developed, e.g., Refs. �20–23��. However,
the shifting of the networks did continue to affect the pro-
cesses of disease spread, even after the populations reached a
stable network structure.

At higher probabilities of disease transmission, the inci-
dence of disease within each population type in the networks
which were allowed to converge to a stable structure and
then “frozen” was significantly different from incidence in
the networks which were allowed to continue shifting, even
after converging to a stable structure �see Table II�. Though
these differences were no longer significant at lower trans-
mission probabilities, it is not unreasonable to suppose that a
lack of statistical sensitivity results simply from the decrease

FIG. 2. Network characteristics, degree distribution and network centrality measures of different network types after convergence: A
representative sample of stable network characteristics after convergence in the three network types �betweenness, closeness, and degree in
panels A, B, and C, respectively�. After converging to stable structures, the three networks showed varying levels of agreement to each other
within each of the measures: degree distributions �top of each panel�, network centrality measures �middle of each panel� and overall network
contact structures �bottom of each panel�. The size of the nodes within each network �bottom of each panel� represents their relative
individual centrality according to the metric of association for their population. Note that network centrality can only be compared within
measure across networks �i.e., betweenness to betweenness measure of two different networks, betweenness centrality for one network
cannot be compared to any of the closeness or degree centrality measures�.
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in the total numbers of infections. Therefore, the continued
shifting of the networks itself affects disease incidence out-
comes.

By comparing the disease incidence from a network that
is still continually shifting within a stable, convergent struc-
ture, to another network that has been frozen while maintain-
ing the same structural characteristics, we showed that two
networks with nearly identical network characteristics differ
significantly in terms of disease incidence based solely on
the continued dynamics of the unfrozen system. From the
fact that these continued association shifts do not yield glo-
bal changes to the network characteristics, do not affect the
structure of the graph in any way that is currently presumed
by disease-network modelers to affect the outcome of an
epidemic, we conclude that the dynamics of the associations
themselves do drastically affect the spread of disease. These
results were also seen for networks of greater size, though
due to the greater sparseness of the network, the results were
not seen to be universally statistically significant until a
transmission threshold of 0.2; see Appendix D. Therefore,
though certain properties of transmission will clearly depend
on the size of the networks involved, our results support the
hypothesis that the differences in model outcome between
static and dynamic network models are not simply an artifact
of network size, but may hold true for larger networks as
well.

In each case of significant difference, disease incidence in
the static network was seen to be greater than in the dynamic
network. This result implies that the shifting associations are
in some way consistently interrupting the spread of disease.
Not only is this surprising in its implication that static net-
works are consistently inaccurate in their estimations of dis-
ease spread on these types of dynamic networks, but in fact,
even assuming this, it is counterintuitive since the duration
of infectiousness is longer than the duration of transitory
social contact �as would be the case in any chronic infectious
disease, such as tuberculosis, carriers of typhoid fever, or
HIV, among others�, therefore shifting associations could
reasonably be assumed to produce newly naive neighbors to
be exposed to the same infectious individuals, which would
increase the transmission rates. The opposite was seen to
occur. Theoretical investigations into possible reasons for
this phenomenon have already begun, however, the fact by
itself, already clearly implies that some mechanisms of indi-
vidually driven social network evolution will cause static
network approximations to fail to accurately predict the dis-
ease dynamics of the system.

While the differences in disease incidence among the dif-
ferent populations that were significant in the static networks
were also seen to be significant in the dynamic networks,
there were some additional significant differences in the dy-
namic cases that were not significant under static network
conditions �see Table II�. Again, this leads us to the conclu-
sion that the different individual social behaviors themselves
affect disease spread over time. We therefore conclude that
substantial further research is needed to understand how and
under what conditions the disease dynamics in real-world,
shifting populations can be accurately approximated by static
models.

IV. CONCLUSIONS AND SUMMARY

Building on the understanding that different individually
based social association behaviors can yield substantially dif-
ferent stable network structures, we have shown that these
network dynamics can greatly affect the susceptibility of a
population to disease risks. Not only do these shifting behav-
iors create drastically different graph structures, which would
lead to different disease dynamics among static networks
having the appropriate characteristics, the ongoing social be-
haviors themselves cause significantly different disease out-
comes. Due to the great diversity of individual-behavior-
based social organization in the natural world, this result has
profound implications to the understanding of how diseases
with a diversity of available host populations may affect en-
tire ecosystems. Additionally, we have demonstrated a rever-
sal threshold in relative population-level disease incidence
based solely on the probability of disease transmission in the
different populations at the smaller network size; more work
will be needed to isolate thresholds �if any� in larger popu-
lations. Together, these results provide insight into how on-
going social network dynamics may impact disease risks
within single populations, and eventually even among mul-
tiple, interacting populations. These results clearly suggest
that further work may be required in order to understand how
static network approximations may be used to tease apart the
subtleties of these dynamics.
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APPENDIX A

A digraph G of N vertices v1 ,v2 , . . . ,vN is used to model
an association network in which each vertex has a predeter-
mined association preference. The three different centrality
measures used in this study are defined as follows.

�a� The degree measure of a vertex vi, D�vi� is defined as

D�vi� =
din�vi�
N – 1

,

where din�vi� is the in degree of vi in G.
�b� The closeness measure of a vertex vi, C�vi� is defined

as

C�vi� =
N – 1

�
j�i

d�vi,v j�
,

where d�vi ,v j� is the length of a shortest directed path from
vi to v j in G. If there is no directed path from vi to v j in G,
we set d�vi ,v j�=N.

�c� The betweenness measure of a vertex vi, B�vi� is de-
fined as
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B�vi� =
2ncount�vi�

�N – 1� � �N – 2�
,

where S= �all shortest directed paths between all pairs of
vertices vi ,v j� and ncount�vi� is the number of shortest paths
in S containing vi as an intermediate vertex.

At t=0, a digraph G0 is initialized by letting each vertex
vi randomly choose five other vertices v j, j� i as its set of
out-neighbors. Thus, associated with the digraph G0, each
vertex vi has its respective degree, closeness, and between-
ness measures D0�vi�, C0�vi�, and B0�vi�. At the beginning of
t=1, a vertex vi whose association preference is degree
�closeness and betweenness�, henceforth referred to as a D
�C and B� vertex will rank the degree �closeness and be-
tweenness� measure of its five out-neighbors and remove its
associations to the two out-neighbors with the lowest degree
�closeness and betweenness� measures. It is assumed that at
each t, each vertex has knowledge of the centrality measures
of its out-neighbors only and not other vertices in the digraph
that it has no associations to. Suppose vi removes its asso-
ciations to vertices v j and vk during t=1, it then randomly
chooses two other vertices in G0 �different from v j and vk�
and establishes new associations to them. The digraph G1
results after all vertices in G0 have made changes to their set
of out-neighbors according to each of their association pref-
erences and a new set of centrality measures D1�vi�, C1�vi�,
and B1�vi� corresponding to G1 is calculated for each vertex
vi. Subsequently, digraphs Gt are derived in similar fashion
from Gt−1.

APPENDIX B

Network dynamics process.

Initialization.

t=0: Generate a random digraph with N vertices, each
with an outdegree of 5. All vertices are assigned col-
lectively to be B, C, or D vertices.

Dynamic shifting.

For t=1 to 200:

The three different centrality measures �B, C, and
D� are computed for all vertices.

For each vertex v of type X �where X is either B, C,
or D�:

�i� the X-type centrality measures of the out-
neighbors of v are ranked in increasing or-
der;

�ii� v removes its associations to the two
out-neighbors with the lowest X-type central-
ity measures;

v randomly chooses two other vertices dif-
ferent from the two just dropped as its new
out-neighbors.

End

End

Disease dynamics process (dynamic model).

Initialization.

t=0: Generate a random digraph G with N vertices
v1 , . . . ,vN, each with an outdegree of 5. Set G0,B=G0,C

=G0,D=G.

Dynamic shifting.

For t=1 to 50:

Vertices in each of Gt−1,B, Gt−1,C, and Gt−1,D shifts
its associations according to network dynamics pro-
cess, resulting in Gt,B, Gt,C, and Gt,D.

End

Disease introduction.

t=50: �i� Same vertex vk chosen as the primary
source of infection in each of G50,B, G50,C,
and G50,D.

�ii� Transmission matrix M50 generated and
used to determine which susceptible vertices
adjacent to vk are infected.

�iii� Each of G50,B, G50,C, and G50,D continues
dynamic shifting.

Disease (and network) dynamics.

For t=51 to 200:

Transmission matrix Mt generated.

For each of Gt,B, Gt,C, and Gt,D

�i� vertices that became infectious during t−2
returns to being susceptible.

�ii� vertices that were just infected during
t−1 becomes infections.

�iii� Mt is used to determine which suscept-
ible vertices adjacent to at least one infec-
tious vertex are successfully infected.

�iv� Each of Gt,B, Gt,C, and Gt,D continues dy-
namic shifting.

End

End

Disease dynamics process (static model).

Initialization.

t=0: Generate a random digraph G with N vertices
v1 , . . . ,vN, each with an outdegree of 5. Set G0,B=G0,C

=G0,D=G.

Dynamic shifting.

For t=1 to 99:

Vertices in each of Gt−1,B, Gt−1,C, and Gt−1,D shifts
its associations according to network dynamics pro-
cess, resulting in Gt,B, Gt,C, and Gt,D.

End
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Disease introduction.

t=100: �i� Same vertex vk chosen as the primary
source of infection in each of G100,B, G100,C,
and G100,D.

�ii� Transmission matrix M100 generated and
used to determine which susceptible vertices
adjacent to vk are successfully infected.

Disease dynamics (only).

For t=101 to 250:

Transmission matrix Mt generated.

For each of Gt,B, Gt,C, and Gt,D

�i� vertices that became infectious at t−2 re-
turn to being susceptible.

�ii� vertices that were just infected at t−1 be-
come infections.

�iii� Mt used to determine which susceptible
vertices adjacent to at least one infectious
vertex are successfully infected.

End

End

APPENDIX C

This appendix provides exact descriptions of the standard
statistical tests employed when analyzing our data. While
these studies are frequently used in epidemiological studies,
we thank an anonymous reviewer for pointing out that they
may not be as familiar to the broader academic community.

Mann-Whitney U test

The Mann-Whitney test is a nonparametric test used to
determine whether two samples �or groups� come from the
same distribution. Under the null hypothesis that the two
groups did indeed come from the same distribution, then the
probability of an observation from one group being greater
than another one from the second group should be 0.5. To
perform this test, the data from both groups is pooled and all
elements are ranked according to magnitude.

The test statistic is

U = n1n2 +
n1�n1 + 1�

2
− R1,

where

ni = the number of observations in group i, i = 1,2,

R1 = sum of the ranks of observations in group 1.

When sample size is sufficiently large �as in our studies�,
normal approximation can be used. In this case,

�U =
n1n2

2
, 	U =	n1n2�n1 + n2 + 1�

12
, Z =

�U − �U�
	U

,

and Z
N�0,1�.

Kruskal-Wallis test

The Kruskal-Wallis test is a nonparametric test that is
used as a one-way analysis of variance. Since it is a nonpara-
metric test, the Kruskal-Wallis test determines the equality of
population medians �instead of means� among three or more
groups. It is an extension of the Mann-Whitney U test �see
above�. To perform this test, the data is pooled �ignoring
group membership� and ranked, with tied values receiving
the average of the ranks they would have received if they
have not been tied.

The test statistic is

K =

12�
i=1

g

ni�r̄i· − r̄�2

N�N + 1�
,

where

g = the number of groups to be compared,

ni = the number of observations in group i, N = �
i=1

g

ni,

rij = rank of observation j from group i,

r̄i =

�
j=1

ni

rij

ni
; r̄ =

�
i=1

g

�
j=1

ni

rij

N
.

The p value is approximated by using a chi-squared distribu-
tion with g−1 degrees of freedom and the null hypothesis of
equal population medians is rejected �meaning there is sig-
nificant difference between the groups� at 
-level of signifi-
cance if K��
;g−1

2 .

FIG. 3. Network degree centrality over time in increasingly
large networks. As network size increased, so did the time required
for the network to reach stability. Disease was introduced into the
system �and, in the static case, the network was frozen� only after
the network had achieved at least 90% of the centrality measure at
stability; indicated for each curve by the barbell.
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Dunn’s post test

Dunn’s post test compares the difference in the sum of
ranks between two groups with the expected average differ-
ence �based on the number of groups and their size�. This test
is used when the p value obtained from Kruskal-Wallis test
suggests that there is significant difference among the
groups’ medians. Dunn’s post tests are then conducted pair-
wise to test if there is significant difference between each
pair of groups. For more information about the tests dis-
cussed here, see Refs. �39,40�.

APPENDIX D

To examine the potential effects of network size on the
relative disease incidence in the static and dynamic net-
works, we examined increasingly large networks. Ultimately
limited by computational power and time, we computed the
results for each of these larger graphs only 30 times, but
were still able to find statistically significant differences be-

tween the static and dynamic outcomes, and among the dif-
ferent population types within the static and dynamic sce-
narios.

For consistency with the experiments on the 50 node net-
works, we allowed each of the larger networks to achieve at
least 90% of their degree centrality measure at stability be-
fore introducing disease into the networks. This required in-
creasing numbers of time steps as the network size increased;
see Fig. 3.

The resulting differences among the disease outcomes in
the larger populations also showed the same results as were
seen �and described in the main body of the text� in the 50
node networks, see Table III. In fact, the statistical signifi-
cance of the difference between the static and dynamic sce-
narios was stronger ��0.0001 in all cases� than that seen for
the smaller network ��0.05�. These significances fell once
the transmission probability was decreased �data not shown�,
most likely due to the decreased relative density of the net-
work.

TABLE III. The pairwise comparison of the cumulative number of infections in the different populations
in networks of increasing size: The numbers reported were observed �for both the dynamic and static models�
after 300 time steps subsequent to the introduction of infection. These result from the nonparametric statis-
tical comparisons of 30 independent Monte Carlo computations for both the static and dynamic models of
each population type, under a transmission probability of 0.2. The “�” �“�”� indicates the population
corresponding to the row of that cell had a significantly larger �smaller� cumulative number of infections than
the population corresponding to the column. Diagonal entries �within each probability of transmission�
represent the comparison of the static to dynamic results in populations of the same type.

B population C population D population

Shown only for
Ptrans=0.2

Three-way
test Dynamic Static Dynamic Static Dynamic Static

Network
size

100
Nodes

B Dynamica B static �B dynamicc �b �b � NS

C C static �C dynamicc �b �b

D Statica D static �D dynamicc

Overall: Dynamic C�B�D; Static C�B�D

250
Nodes

B Dynamica B static �B dynamicc �b �b � �

C C static �C dynamicc �b �b

D Statica D static �D dynamicc

Overall: Dynamic C�B�D; static C�B�D

500
Nodes

B Dynamica B static �B dynamicc �b �b NS �

C C static �C dynamicc �b �b

D Statica D static �D dynamicc

Overall: Dynamic C�B�D; static C�B�D

aDenotes a p value �0.0001 with Kruskal-Wallis test. NS denotes no significant difference.
bDenotes a p value �0.001 with Dunn’s post test �following Kruskal-Wallis test�. �, � denotes a p value
�0.05 with Dunn’s post test �following Kruskal-Wallis test�.
cDenotes a p value �0.0001 with Mann-Whitney test.
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